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General analytical solutions for the potential–time curves corresponding to a slow charge
transfer reaction in reversal and cyclic chronopotentiometry with exponential current–time
functions, I(t) = I0ewt, have been deduced. For obtaining these equations, the superposition
principle can be applied. Our results are valid for planar and spherical electrodes of any size.
We have evaluated the effects of electrode sphericity and of the reversibility of the process
on the potential–time curves. The analysis of the successive potential–time responses allows
to obtain accurate values of the thermodynamic and kinetic parameters of the process under
study as well as to detect any possible kinetic complication. The validity of the theoretical
solutions has been experimentally tested with the iron(III) trioxalate complex in aqueous so-
lutions.
Keywords: Reversal chronopotentiometry; Cyclic chronopotentiometry; Exponential cur-
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General analytical equations for the potential–time curves corresponding to
a simple charge transfer process in cyclic chronopotentiometry with expo-
nential current–time functions have been derived and experimentally
tested. These equations are applicable to planar electrodes and spherical
electrodes of any size, and coincide with those previously derived when
constant currents are used by making1–4 w = 0. In order to obtain these
equations, we have, in the first place, deduced the general potential–time
response corresponding to current reversal chronopotentiometry with two
successive exponential currents of alternating sign, and later we have dem-
onstrated that the superposition principle can be applied even in this case,
in which the current varies exponentially with time. By following a proce-
dure similar to that indicated in previous papers4,5, we have derived general
expressions of the concentration profiles of both electroactive species par-
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ticipating in the electrode process and of the potential–time curves. The ex-
pressions are valid for any degree of reversibility, for any value of the diffu-
sion coefficients, and for any number of exponential currents applied of
the form I t Ik

k wt k( ) ( )= − +1 1
0 e with w ≥ 0.

This solution is of great interest for using successive programmed cur-
rents of different sign since, when other current–time functions are used
(I(t) = I0tu, I(t) = I0 cos (wt), ...), a general compact solution applicable to
spherical electrodes of any radius could not be derived so far4,6.

Our results indicate that when exponential current–time functions are
used, the potential–time curves can reach the transition time, even if the
electrode radius strongly decreases. However, when chronopotentiometry
with constant currents is used, the potential–time response corresponding
to the application of the first current tends to be time-independent and the
following E/t responses tend to disappear as the electrode sphericity in-
creases, and hence chronopotentiometric techniques with constant current
cannot be used with spherical electrodes of small size2,7,8.

Moreover, when the electrode radius decreases, the limits for which we
can consider that the electrode process can behave as a reversible, quasi-
reversible or totally irreversible change, and they become strongly depend-
ent on the values of the electrode radius and on the exponent w in the pro-
grammed current applied.

We have experimentally tested the theoretical equations obtained in this
paper by applying successive exponential current–time functions of the
form I t Ik

k wt k( ) ( )= − +1 1
0 e to the iron(III) trioxalate complex in aqueous solu-

tions using electrodes of different radii. Moreover, we have also determined
the half-wave potential of the iron(III) trioxalate complex from the potential–
time curves corresponding to the different cathodic and anodic programmed
currents applied by using a simple procedure in which the plots corresponding
to the successive currents must be superimposable. This method implies in it-
self a confirmation of the parameters obtained and it enables us to detect very
easily any possible complications in the charge transfer process. For the above
reasons we can conclude that reversal and cyclic chronopotentiometry with
exponential currents are complete and simple techniques in characterising
electrode processes.

EXPERIMENTAL

A computer-driven potentiostat-galvanostat was designed and constructed by QUICELTRON
(Spain).
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Pulse and waveform generation and data acquisition were performed using i-SBXDD4 and
DAS16-330i (ComputerBoards, U.S.A.) boards, respectively. All computer programmes were
written in our laboratory.

In the chronopotentiometric experiments, the current switch was performed when the
potential attained a predetermined value (cathodic or anodic) at which we assumed the
transition time had already been reached. The necessary comparison was carried out by
means of an interrupt service routine using the clock of the PC.

A three-electrode cell was employed in the experiments. A static mercury drop electrode
(SMDE) served as a working electrode. The SMDE was constructed using a DME, EA 1019-1
(Metrohm), to which a home-made valve was sealed. The electrode radius of the SMDE was
determined by weighing a large number of drops. The counter-electrode was a Pt foil and
the reference electrode was an Ag|AgCl, 1.0 M KCl electrode. In the experimental chrono-
potentiometric measurements we have used different digital noise filters of the instrument
supported software.

Iron(III) chloride and potassium oxalate (Merck) were of reagent grade. All chemical re-
agents were used without further purification.

Working solutions containing [Fe(C2O4)3]3– were freshly prepared in order to avoid possi-
ble oxidation of the oxalate anion with Fe3+. The value obtained for the redox potential of
the iron(III) trioxalate complex corresponds to a series of five essays. The result obtained is
the mean of the five experimental values. The error corresponds to the standard deviation.

The diffusion coefficient of [Fe(C2O4)3]3– was determined by chronoamperometric mea-
surements, obtaining the following value: D

[Fe(C O ) ]2 4 3
3– = (7.30 ± 0.10) × 10–6 cm2 s–1, which is

in agreement with the values reported9–11.
Nitrogen gas was passed through solutions for deaeration for 15 min prior to measure-

ments.

THEORY

Application of a Programmed Current of the Form I(t) = I1ewt

We will consider the following charge transfer process:

A + ne– B (I)

which takes place at the electrode-solution interface, where kf and kb are
the heterogeneous rate constants of reduction (forward) and oxidation
(backward) processes, respectively, and are given by12,13:

( )k k
nF

RT
E t Ef = − −





′ ′0 0exp ( )
α

(1)
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( )k k
nF

RT
E t Eb = − −





′ ′0 01
exp

( )
( )

α
(2)

with k0′, α and E0′ being, respectively, the apparent heterogeneous rate con-
stant at E0′, the charge transfer coefficient and the formal standard poten-
tial of the charge transfer process.

In order to obtain the expressions of the concentration profiles of electro-
active species A and B, we must solve the following differential equations
system
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describing mass transport when we apply a current variable programmed
exponentially with time, I(t) = I1ewt, by taking into account the following
boundary value problem that the solutions of the above system must fulfil:

t r r
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(6)

where cA
* and cB

* are the initial concentrations of both oxidised A and re-
duced B species, respectively, Di the diffusion coefficient of the species i, i =
A or B, and A the area of the stationary spherical electrode (A = 4πr0

2, with
r0 being the electrode radius). In Eqs (3)–(6), cA,1(r,t), cB,1(r,t) are the solu-
tions corresponding to the first exponential current applied. In all expres-
sions appearing in this work, the subscript refers to the programmed cur-
rent being considered (1, 2, ... j). By following the procedure proposed by
Koutecký14,15, the following expressions for the surface concentrations of
electroactive species A and B are obtained:
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2
, i

iD

r
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Ω1 = wt (13)

γ =
D

D
A

B

. (14)

Equations (7) and (8) are valid for spherical electrodes of any radius, in-
cluding as limit cases, plane electrodes (r0 → ∞)14,16,17 and spherical ultra-
microelectrodes (r0 → 0)7,14.
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The transition time corresponding to the application of a programmed
current I(t) = I1ewt can be obtained by making cA,1(r0,t = τ1) = 0 in Eq. (7).
Thus, the following nonexplicit expression for τ1 is obtained:

( ) ( )( )F
NA

s

ξ
τ τ, ,1 1

1 1

1Ω = (15)

where

( )ξ
τ

τi
iD

r
i,1

1

0
1

2
= = A or B (16)

( )Ω1 1
1τ

τ= w . (17)

The potential–time curve corresponding to this first programmed current
applied, I1ewt, is given by
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If the charge transfer process given by Eq. (I) is reversible (k ′ → ∞0 ),
Eq. (18) takes the following simpler form:

E t E
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rev
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Ω
. (21)

Erev
1/2 is the so called half wave reversible potential of the process12,13.
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If the charge transfer process given by Eq. (I) is totally irreversible, the
general equation for the potential–time curve becomes

E t E
RT
nF
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N D

RT
nF

g
s

( ) ln ln= + +′
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0
02

α α
A

irrev
c (22)

with

g
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c A

e
=

−1 1 1

1

( , )
.,ξ Ω

Ω
(23)

Current Reversal Chronopotentiometry

We will consecutively apply a second exponential current of the opposite
sign, −I wt

2
2e , to the first current, without re-establishing the equilibrium of

the electrode solution interface. This second current is applied in the time
interval 0 ≤ t2 ≤ τ2, with τ2 being the transition time corresponding to the
oxidation of species B. Under these conditions, the total time is given by

t t= +τ1 2 . (24)

cA,2(r,t) and cB,2(r,t) are the solutions corresponding to the new current ap-
plied.

The differential equation system that describes the mass transport is
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The boundary value problem that the solutions of the differential equa-
tion system given by the equation system (25) for the second programmed
current applied must fulfil is the following:
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Due to the linearity of the equation system (25), the solutions corre-
sponding to the second programmed current, cA,2(r,t) and cB,2(r,t), can be
expressed in the following manner:
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where cA,1(r,t) and cB,1(r,t) are the solutions found for the application of
the first programmed current (given by Eqs (7) and (8)), and ~ ( , ),c r tA 2 2 and
~ ( , ),c r tB 2 2 are new unknown functions to be determined.

By taking into account Eqs (3)–(6) and (29), the system (25) and the
boundary value problem given by Eqs (26)–(28) are transformed into
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As can be seen, the differential equation system (3), whose solutions cor-
respond to the first exponential current applied, cA,1(r,t) and cB,1(r,t), is
identical to that corresponding to the new unknown partial solutions of
the second exponential current applied, ~ ( , ),c r tA 2 2 and ~ ( , ),c r tB 2 2 , given by
Eq. (30). By following the procedure indicated in1,4,5,14,15, we derive the ex-
pressions for ~ ( , ),c r tA 2 0 2 and ~ ( , ),c r tB 2 0 2 .

From Eq. (29), we obtain the following expressions for the surface con-
centrations of both species A and B, corresponding to the application of the
second exponential current:
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where F(ξi,j,Ωj) is given by Eq. (9), with i = A or B, and j = 1 or 2.
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Ω1 1 2= wt , (38)

Ω 2 2 2= wt , (39)

t t1 2 1 2, = +τ (40)

t t2 2 2, .= (41)
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Equations (34) and (35) are valid for spherical electrodes of any size, in-
cluding as limit cases, plane electrodes (r0 → ∞) and spherical ultramicro-
electrodes (r0 0→ ).

The transition time for the second programmed current applied can be
obtained by making cB,2(r0,t = τ1 + τ2) in Eq. (35). Thus, for t = τ1 + τ2 the fol-
lowing nonexplicit expression must be fulfilled:
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with t1,2 = τ1 + τ2 and t2,2 = τ2.
If species B is not initially present in the solution (cB

* = 0), Eq. (42) takes
the following simpler form:
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The potential–time curve corresponding to the second exponential cur-

rent applied is given by
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In the case of a reversible charge transfer process, k ′ → ∞0 , general equa-
tion (44) becomes:

E t E
RT
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g( ) ln ,= +rev
1/2

rev
a (45)

where Erev
1/2 is defined in Eq. (20) and
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. (46)

When the electrode process is totally irreversible (k ′0 << 1 cm s–1), general
equation (44) takes the following form:

E t E
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g
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( )
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−
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e
(48)

Cyclic Chronopotentiometry

In this section we will consider the application to the electrode of a series
of n successive programmed currents of alternating sign which vary expo-
nentially with time according to the following scheme:

I t

I t

I t

wt

wt

k
k

wt
k

k

1 1 1

2 2 2

1

1

2

0

0

1 0

e

e

e

≤ ≤
− ≤ ≤

− ≤+

τ
τ

. .

. .

. .

( ) ≤

− ≤ ≤+

τ

τ

k

n
n

wt
n nI tn

. .

. .

. .

( ) .1 01 e

(49)
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Here, Ik (1 ≤ k ≤ n) is the absolute value of the current amplitude of each ex-
ponential current applied, tk is the time during which the k-th programmed
current is applied, and τk is the transition time corresponding to the k-th
programmed current applied. Therefore, the total time elapsed between the
application of the first and k-th exponential current is given by

t tk k= + + + +−τ τ τ1 2 1... . (50)

The mathematical treatment employed in the resolution of the differen-
tial equation systems that describe the mass transport to the electrode for
the first and second exponential current applied can be generalized by in-
duction. Thus, by applying the superposition principle18–21, we can deduce
that the concentration profiles of both electroactive species ci,k(r,t), i = A or
B, for the k-th programmed current applied, take the following forms:

c r t c r t c r t kk k k kA A A, , ,( , ) ( , ) ~ ( , )= + >−1 1 (51)

c r t c r t c r t kk k k kB B B, , ,( , ) ( , ) ~ ( , ) ,= + >−1 1 (52)

where ci,k–1(r,t), i = A or B, are the solutions corresponding to the applica-
tion of the (k – 1)-th exponential current applied:

c r t c r t c r tk j j
j

k

A A A, , ,( , ) ( , ) ~ ( , )−
=

−

= +∑1 1
2

1

(53)

c r t c r t c r tk j j
j

k

B B B, , ,( , ) ( , ) ~ ( , ) .−
=

−

= +∑1 1
2

1

(54)

The differential equation system that describes the mass transport and its
boundary value problem now takes the following form:
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t r rk > =0 0;
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By comparing equation system (55) and the boundary value problem (56)
and (57) with Eqs (30) and (31)–(33), respectively, we deduce inmediately
that it is possible to apply the superposition principle, and we can general-
ize the expressions for the surface concentrations corresponding to the ap-
plication of k programmed currents, which vary exponentially with time,
where k is any number,

c r t

c
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I
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j j
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( , )
( , ) ( )0

1 1
1 1

12

1 1= − + − + −

=
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τ ξ( , ), Ω (58)

c r t

c

c

c
N F

I

I
k

s
j j

j

B

A

B

A

B
,

*

*

* ,

( , )
( , ) ( )0

1 1
1 1

1

1= + + − + −

=

γ ξ Ω
2 1

1
k

j

j

w

j j

I

I
Fj∑

−

−






















+ e B
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where F(ξi,j,Ωj) is given by Eq. (9) with i = A or B, and j = 1, 2, ... k. Moreover

ξ i j

i j kD t

r
i j k,

,
, , ...= = =

2
1 2

0

A or B; (60)
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Ω j j kwt j k= =, , , ...1 2 (61)

t tj k p k
p j

k

, = +
=

−

∑ τ
1

(62)

t tk k k, .= (63)

The expressions for the surface concentrations given in Eqs (58) and (59)
allow to obtain, as particular cases, the solutions corresponding to a plane
electrode of constant area and a spherical microelectrode. Thus, the func-
tion F(ξi,j,Ωj), given by Eq. (9) with i = A or B and j = 1, 2, ... k, takes the fol-
lowing simpler form for the case of a plane electrode (r0 → ∞, ξ i j, → 0)

( )F F
w

i j

i j j j j j( , ) ( ) exp( )

;

,ξ → = =

= =

0
1

2
Ω Ω Ω Ωplane erf

A or B 1 2, , ... ,k (64)

whereas for the case of a spherical microelectrode, F(ξi,j,Ωj) becomes (r0 → 0,
ξ i j, )→ ∞

F F i ji j j j
i

j( , ) ( ) exp( ) ; ,,
,

ξ
ξ

>> = = = =1
1

1
0

Ω Ω Ωmicro A or B 2, ... .k (65)

The expression for the transition time corresponding to the k-th expo-
nential current applied, ( )− +1 1k

k
wtI ke , can be obtained by making cA,k(r0,t =

τk) = 0 for k odd, or cB,k(r0,t = τk) = 0 for k even, in Eqs (58) or (59), respec-
tively. In this way, nonexplicit expressions for transition time are obtained:
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b) k even
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The potential–time response corresponding to the k-th exponential cur-
rent applied, ( )− +1 1k

k
wtI ke , is given by
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which, for the case of a reversible electrode process, becomes (k ′ → ∞0 ):
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rev (69)

with Erev
1/2 given by Eq. (20) and
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whereas for a totally irreversible process, Eq. (68) becomes:

a) k odd (irreversible cathodic E/t curve)
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b) k even (irreversible anodic E/t curve)

E t E
RT

nF
k

N D

RT
nF

g
s

( )
( )

ln
( )

ln= −
−

−
−

′
′

0
0

1
2

1α α
A

irrev
a (73)

with

g

c

c
N F

I

I

I

Is
j j

j

k
j

irrev
a

B

A

B

=

+ + − + −

=
∑

*

* ,( , ) ( )γ ξ 1 1
1 1

12

1Ω
j

w

j j

k wt

j

k

F

I

I

−

+






















−

1

1

1e

e

B

τ ξ( , )

.

, Ω

(74)

RESULTS AND DISCUSSION

Current Reversal Chronopotentiometry with Exponential Currents of the
Form I(t ) ( 1) I ej

j 1
0

wt j= − +

a) Transition Times

Figure 1 shows the variation with the electrode sphericity (through the pa-
rameter ξ 0 02, /A A= D r ) of the transition times τ1 (see Fig. 1a and Eq. (15)),
τ2 (see Fig. 1b and Eq. (43)), and of the ratio τ2/τ1 (see Fig. 1c), correspond-
ing to the application of two successive exponential currents of the form
I(t) = I0ewt and I t I wt( )2 0

2= − e , to spherical electrodes. These curves have
been obtained for different values of the exponent w in both programmed
currents applied by assuming that cB

* = 0 and Ns = 1 s–1/2.
From Fig. 1a we can see that τ1 always increases with ξ0,A, the more so the

lower w is (see curves with w = 0.1 s–1), whereas the τ2 values shown in Fig.
1b remain practically constant with ξ0,A for w > 0. Thus, the relationship
τ2/τ1 decreases with ξ0,A for any value of w in the applied currents and the
decrease is the more evident, the lower is w (see Fig. 1c). It can also be
observed that, for a given value of ξ0,A (in Figs 1a and 1b we have marked ξ0,A =
0.5 s–1/2), τ1 and τ2 increase if w decreases.

In the case corresponding to the application of two successive current
steps of alternating sign (see curves with w = 0 in Figs 1a and 1b), we can
see that τ1 increases markedly with ξ0,A, to the extent that for ξ0,A values
larger than 1.6 s–1/2 we can consider τ1 is not reached. A similar behaviour
can be observed for τ2, although the increase in τ1 is more evident. The rela-
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FIG. 1
Theoretical variation of τ1 (a, Eq. (15)), τ2 (b, Eq. (43)) and of the relationship τ2/τ1 (c) with the
electrode sphericity, ξ0,A, corresponding to the application of current reversal
chronopotentiometry with exponential currents, I(t) = I0ewt and I t I wt( )2 0

2= − e . Ns = 1 s–1/2,
DA = 10–5 cm s–1, γ = 1, cB

* = 0. The values of the exponent w (in s–1) in both programmed cur-
rents applied are shown on the curves
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tionship τ2/τ1 quickly decreases to values close to zero (see curve with w = 0
in Fig. 1c). This fact indicates that the use of current reversal chrono-
potentiometry with current steps is not suitable with spherical electrodes of
small size.

b) Potential–Time Curves

Figure 2 shows the theoretical potential–time curves calculated from
Eqs (18) and (44) corresponding to the application of current reversal
chronopotentiometry with exponential currents, I(t) = I0ewt and
I t I wt( )2 0

2= − e , to a spherical electrode with ξ0,A = 0.2 s–1/2. These curves
have been obtained for different values of the heterogeneous rate constant
of the charge transfer process, k0′, with α = 0.5, and they show that the de-
crease in k0′, and, therefore, the increase of the irreversibility of the elec-
trode process, makes the curves corresponding to the first cathodic current
tend towards more negative potentials, whereas those corresponding to the
second anodic programmed current are shifted towards more positive po-
tentials. Hence, the separation between both responses increases. The varia-
tion of k0′ logically does not affect the cathodic and anodic transition
times, τ1 and τ2. If we analyze the dependence of the potential–time curves
on the heterogeneous rate constant k0′ with spherical electrodes of conven-
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FIG. 2
Influence of k0′ in the theoretical E(t) – E0′/t curves (Eqs (18) and (44)) corresponding to the ap-
plication of current reversal chronopotentiometry with exponential currents, I(t) = I0ewt and
I t I wt( )2 0

2= − e , to a spherical electrode. Ns = 0.5 s–1/2, w = 0.5 s–1, ξ0,A = 0.2 s–1/2, n = 1, α = 0.5,
T = 298 K. The values of k0′ (in cm s–1) are shown on the curves. For other conditions, see
Fig. 1
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tional size, we can deduce that the electrode process given by scheme (I)
can be considered as quasireversible if 5 × 10–3 ≤ k0′ ≤ 0.1 cm s–1. In this case
we cannot use any simplification in the general equations (18) and (44) for
the potential–time curves. If k0′ ≤ 5 × 10–3 cm s–1, the results obtained with
general Eqs (18) and (44) hardly differ from those obtained with simplified
Eqs (22) and (47). Thus, under these conditions, the process can be consid-
ered as totally irreversible. Finally, if k0′ ≥ 0.1 cm s–1 the electrode process
behaves as reversible and is totally defined by simplified Eqs (19) and (45).

The limits discussed above for which we can consider the electrode pro-
cess as reversible, quasireversible or totally irreversible are not valid when
spherical electrodes of micrometric dimensions are used. Thus, the revers-
ibility intervals of the process change with w and with the electrode radius
such that a decrease in r0 and/or an increase in w makes the potential–time
response more irreversible.

In order to show this effect, in Fig. 3 we have plotted theoretical
potential–time curves obtained with general equations (18) and (44), which
are applicable to the electrode process for any value of k0′ (solid lines), and
with Eqs (22) and (47) (dashed lines), corresponding to a totally irreversible
behaviour, for a process with k0′ = 5 × 10–3 cm s–1 with a spherical electrode
for three values of the parameter ξ 0 02, ( /A A= D r ). As is evident, on using
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FIG. 3
Influence of the electrode sphericity on the theoretical cathodic and anodic potential–time
curves corresponding to the application of current reversal chronopotentiometry with expo-
nential currents, I(t) = I0ewt and I t I wt( )2 0

2= − e , calculated from Eqs (18) and (44) (solid lines)
for quasireversible processes, and Eqs (22) and (47) (dashed lines) for totally irreversible ones.
w = 0.5 s–1, Ns = 1 s–1/2, k0′ = 5 × 10–3 cm s–1, α = 0.5. The values of ξ0,A (= 2 D rA / 0), in s–1/2,
appear on the curves. For other conditions, see Fig. 2
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electrodes of lower radius (higher ξ0,A values), this process behaves as to-
tally irreversible (see curves with ξ0,A = 15 s–1/2, r0 = 4.2 × 10–4 cm if DA =
10–5 cm2 s–1), and Eqs (22) and (47) can be used instead of Eqs (18) and (44)
(which have no explicit form) in order to calculate kinetic parameters.

Thus, a quasireversible electrode process can behave as reversible or to-
tally irreversible by changing the electrode radius and/or the value of w in
the exponential applied current.

In Fig. 4 we have plotted the experimental cathodic and anodic chrono-
potentiograms for the reduction and subsequent reoxidation of 5 mM

[Fe(C2O4)3]3– in 0.25 M K2C2O4 (pH 4.77) when current reversal chrono-
potentiometry with exponential currents, I0ewt and −I wt

0
2e , w = 0.3 s–1, are

applied to a SMDE for two different values of the electrode radius, and the
same value of Ns = 1.51 s–1/2. From these curves, we can see that the effect
exerted by the electrode sphericity is very important, reaching its maxi-
mum for t values close to the direct (τ1) and reverse (τ2) transition times. It
can also be observed in this figure that the decrease in the electrode radius
gives raises an increase in τ1, whereas τ2 remains practically unaltered. In
such a way the ratio τ2/τ1 decreases, the fact that has been previously
pointed out theoretically (see Fig. 1).
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FIG. 4
Experimental E(t)/t curves obtained for the application of current reversal chronopotentio-
metry with exponential currents, I0ewt and −I wt

0
2e , to the system 5 mM [Fe(C2O4)3]3– in 0.25 M

K2C2O4 (pH 4.77) in SMDE. D
[Fe(C O ) ]2 4 3

3– = 7.3 × 10–6 cm2 s–1, n = 1, T = 298 K, w = 0.3 s–1, Ns =
1.51 s–1/2. The values of r0 (in cm) are: 0.0252 (solid line, I0 = 7.8 µA), 0.0313 (dashed line, I0 =
12.2 µA)
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For totally irreversible processes, it is possible to obtain accurate values of
thermodynamic (E0′) and kinetic parameters (α and k0′) of the charge trans-
fer by following the procedure indicated in1,4. Thus, from the slopes and in-
tercepts of the plots of E(t) vs ln g irrev

c (see Eq. (22)), and E(t) vs ln g irrev
a (see

Eq. (47)), we can deduce these parameters, obtaining

α = RT
nFPc

(75)

( )1 − = −α RT
nFPa

(76)

ln lnk
O O
P P

N Ds′ =
−
−

+0 c a

c a

A

2
(77)

E
O P O P

P P
′ =

−
−

0 a c c a

c a

, (78)

where Oi and Pi are the intercepts and slopes for the reduction (i = c) and
oxidation (i = a) processes, respectively.

In the case of reversible electrode process, the half-wave potential can be
immediately obtained from the intercepts of the plots of E(t) vs ln g rev

c for
the application of a cathodic current I(t) = I0ewt (Eq. (19)), or from the inter-
cepts of the plots of E(t) vs ln g rev

a for the application of an anodic current
I(t) = –I0ewt (Eq. (45)). This linear regression has been applied to the current
reversal chronopotentiograms obtained from a solution of 5 mM [Fe(C2O4)3]3–

in 0.25 M K2C2O4 (pH 4.77) by applying two successive exponential cur-
rents of the form I(t) = I0ewt and I t I wt( )2 0

2= − e , with I0 = 7.87 µA and w =
0.25 s–1, in SMDE of radius r0 = 0.025 cm. As is shown in Fig. 5, the straight
lines corresponding to the cathodic (E(t) vs ln g rev

c , black circles) and anodic
(E(t) vs ln g rev

a , white squares) programmed currents applied, are super-
imposable, in agreement with the theoretical results corresponding to Eqs
(19) and (45) since the electrode behaves as plane and, therefore, in these
equations, ξi,j → 0, i = A or B, j = 1, 2. From the intercepts in Fig. 5 we have
determined the following value for the reversible half-wave potential for
this system: Erev

1/2 = (–0.244 ± 0.001) V vs Ag|AgCl, 1.0 M KCl, which is in
agreement with previously reported values9,22,23.
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Cyclic Chronopotentiometry with Exponential Currents of the Form
I(t) ( ) I ej wt j= − +1 1

0

a) Transition Times

Figure 6 shows the influence of the electrode sphericity on the ratio
τk(odd)/τ1 (see Eqs (15) and (66)), and on the ratio τk(even)/τ2 (see Eqs (42)
and (67)), corresponding to the application of twenty successive exponen-
tial currents of alternating sign, I t Ij wt j( ) ( )= − +1 1

0e , with w = 0.5 s–1 and Ns =
3 s–1/2, to spherical electrodes of different radii.

From these curves, we can observe a higher increase in the ratio
τk(even)/τ2 with the number of programmed currents applied, when the
electrode radius is greater, whereas the ratio τk(odd)/τ1 slightly decreases
with the number of currents applied for high ξ0,A values.

b) Current Potential Curves

In Fig. 7 we have experimentally studied the influence of w on the E/t
curves obtained by applying seven programmed currents of the form
I t Ik

k wt k( ) ( )= − +1 1
0e to the system 5 mM [Fe(C2O4)3]3– in 0.25 M K2C2O4 (pH

4.77) in SMDE with I0 = 7.87 µA and different values of the exponent w.
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FIG. 5
Experimental dependence of E(t) on ln grev

c (�, see Eq. (19)), and on ln grev
a (�, see Eq. (45)), for

the system 5 mM [Fe(C2O4)3]3– in 0.25 M K2C2O4 (pH 4.77) in SMDE, corresponding to current
reversal chronopotentiometry with two exponential currents of the form I(t) = I0ewt and
I t I wt( )2 0

2= − e . I0 = 7.87 µA, w = 0.25 s–1, r0 = 0.025 cm. For other conditions, see Fig. 4
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This figure shows that the increase in the exponent w causes a decrease in
all the cathodic and anodic transition times, τk, with the differences being
greater as the number of programmed currents applied grows. This behav-
iour is due to the increase in the current density with w.
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FIG. 6
Influence of the sphericity on the relationships τk(odd)/τ1 (black symbols) and τk(even)/τ2
(white symbols) corresponding to the application of twenty programmed currents of the form
I t Ik

k wtk( ) ( )= − +1 1
0e , w = 0.5 s–1, Ns = 3 s–1/2, n = 1, γ = 1, cB

* = 0. The values of ξ0,A (in s–1/2) are
on the curves

FIG. 7
Experimental E/t curves corresponding to the application of seven programmed currents of the
form I t Ik

k wtk( ) ( )= − +1 1
0e to the system 5 mM [Fe(C2O4)3]3– in 0.25 M K2C2O4 (pH 4.77) in

SMDE. r0 = 0.025 cm, I0 = 7.87 µA. The values of w (in s–1) are: 1 (solid lines), 0.75 (dashed
lines) and 0.50 (dotted lines). For other conditions, see Fig. 4
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Finally, we should point out that the application of cyclic chrono-
potentiometry with programmed currents of the form ( )− +1 1

0
j wt

I je to spher-
ical electrodes of very small size (i.e., microelectrodes and ultramicro-
electrodes), is not of interest since, as has been discussed in the previous
section, the transition times τj, j > 1, are very small unless species B is ini-
tially present in the solution.
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